M.Sc. (Computer Science) Semester-I

DISCRETE STRUCTURES

Paper-MCS-104

Time Allowed- 3 Hours]
[Maximum Marks-100
Note :-Attempt any FIVE questions.

1. (a) Consider the relation \sim defined on Z by declaring that $\mathrm{a} \sim \mathrm{b}$ if and only if $\mathrm{b}+\mathrm{a}$ is even number. Is \sim an equivalence relation? If yes, prove that it is. If no, explain why not?
(b) Is the function $y=f(x)=3 x+2, x, y \in R$ onto? Is it one-to-one? What if $x, y \in Z$? Explain.
(c) Prove that $(A \cap B) \cup(A \cap \bar{B})=A$, where \bar{B} denotes the complement. 7,6,7
2. (a) Let R be a commutative ring with unity. If M is a maximal ideal of R, prove that R / M is a field.
(b) If R is a ring and $f(x), g(x)$ in $R[x]$ are degrees 3 and 4 respectively, then $f(x) g(x)$ is always of degree 7 . Is the above statement true or false ? Justify.

10,10
2339(2116)/RRA-4524
3. (a) Attempt each of the following :
(i) Define a directed graph and a sub graph.
(ii) True or False ? Justify. There is one and only one path between every pair of vertices in a tree.
(b) Define edge connectivity and vertex connectivity. Give an example of a graph in which vertex connectivity is strictly smaller than edge connectivity. 10,10
4. (a) Show that the sum of the degrees of all vertices of a graph is twice the number of edges in the graph.
(b) Define the edge chromatic number of a graph. Construct a graph with chromatic number 5 .
(c) If G is a planar graph, then every node in G has degree five or less.
5. (a) Solve the recurrence relation :

$$
a_{n}=4 a_{n-1}-4 a_{n-2} ; n \geq 3 a_{1}=1, a_{2}=7
$$

(b) How many ways are there to distribute 40 identical jellybeans among 4 children without any restriction?
(c) How many permutations are there of the 26 letters of the English alphabet that contain the sequence 'MATH' ?
$10,5,5$
6. (a) Define spanning tree and minimal spanning tree. Draw three spanning trees of the following graph :

(b) Let G be a graph having V vertices, E edges and K components, where each component is a tree. Obtain a formula in terms of V, E and K.
7. (a) Find a generating function to count the number of integer solutions to $e_{1}+e_{2}+e_{3}=10$ if for each i, $0 \leq \mathrm{e}_{\mathrm{i}}$.
(b) Explain the application of Boolean algebra in logic circuit and switching functions, by taking appropriate examples.
8. (a) State the principle of Inclusion/Exclusion for 3 sets. Use the principal of Inclusion and Exclusion to find integers between 100 and 10100, both inclusive, which are divisible by $2,5 \& 7$.
(b) Determine the number of onto functions from $\{1,2, \ldots, n\}$ to $\{1,2\}$, where $\mathrm{n}>=2$.
(c) Is $\mathrm{F}(\mathrm{x})=\sqrt{\mathrm{x}}$ a function? Give argument to support your answer.
(d) A non directed graph G has 8 edges. Find the number of vertices if the degree of each vertex in G is 2 .
(e) Prove that every field is an Integral Domain.

